$Y_{t},X_{jt}$ をそれぞれ $t$期の被説明変数(explained variable),$t$期の説明変数(explanatory variable)$j$ とします.
$t=1,2,\cdots,n$ の $n$期を考えると,\[\begin{array} \ Y_{1}&=\beta_{1}+\beta_{2}X_{21}+\cdots+\beta_{k}X_{k1}+u_{1}\\Y_{2}&=\beta_{1}+\beta_{2}X_{22}+\cdots+\beta_{k}X_{k1}+u_{2}\\ \vdots &= \vdots\\Y_{n}&=\beta_{1}+\beta_{2}X_{2n}+\cdots+\beta_{k}X_{kn}+u_{n}\end{array}\]となります.
ここで,\[y=\left(\begin{array}{c}Y_{1}\\Y_{2}\\ \vdots\\Y_{n}\end{array}\right)\]\[X=\left(\begin{array}{cccc}1&X_{21}&\cdots&X_{k1}\\1&X_{22}&\cdots&X_{k2}\\ \vdots&\vdots&\vdots&\vdots\\1&X_{2n}&\cdots&X_{kn}\end{array}\right)\]\[\beta=\left(\begin{array}{c}\beta_{1}\\\beta_{2}\\ \vdots\\\beta_{n}\end{array}\right)\]\[u=\left(\begin{array}{c}u_{1}\\u_{2}\\ \vdots\\u_{n}\end{array}\right)\]とおくと,\[y=X\beta+u\]と表すことができます.
Vita brevis, ars longa. Omnia vincit Amor.