三角不等式

三角不等式

$a,b$ を実数とすると,\[|a| + |b| \geq |a+b| \]が成り立つ.

\[ \begin{eqnarray} (|x|+|y|)^{2}-|x+y|^{2} &=& (|x|^{2}+2|x||y|+|y|^{2})-(x+y)^{2} \\ &=& x^{2}+2|xy|+y^{2}-(x^{2}+2xy+y^{2}) \\ &=& 2(|xy| - xy) \geq 0 \end{eqnarray} \]ここで,\[ |x|+|y| \geq 0 , |x+y| \geq 0 \]であることから,\[|a| + |b| \geq |a+b| \]


Mathematics is the language with which God has written the universe.





















テイラーの定理 - 三角不等式 - 上界と下界 - 関数 - 関数空間